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Abstract —
Background/Context: Reinforcement learning is a growing field within machine learning which aims to
answer the question of whether machines can learn from interacting with an environment without the need
for human intervention. AlphaZero is one of the most well-known successes in this field, however it was
trained using a lot of computing resources, and its results are hard to verify. Furthermore, few experiments
have been done to test the effect of different learning parameters and neural network architectures and this
project explores how these affect results. Finally, many recent successes within computer vision have
involved using pre-trained networks for new tasks, and this project aims to explore how this could be used
to speed up the training of AlphaZero on more complex tasks.

Aims: The aims are: to implement AlphaZero and train the network on limited hardware for two
board games to verify its effectiveness; to experiment with parameters and neural network architectures
during training to understand their effect on the algorithm; to explore whether traditional fine-tuning
methods can be used to scale up to bigger boards.

Method: AlphaZero has been implemented following the original research papers. A player us-
ing only Monte Carlo Tree Search (MCTS) has also been implemented for comparison. AlphaZero has
been trained on Connect4 and a more complicated game - Pathwayz. Tests have been performed using
different parameters and two different neural network architectures have been implemented (one using a
convolution neural network, one using a residual convolution neural network) to broaden understanding
of parameters and their effects on results. For both Connect4 and Pathwayz, a tournament was played
between all trained AlphaZero players and the MCTS player. Scalability was tested by first training net-
works to play Connect4 on a 6x7 board for 50 iterations, and fine-tuning their weights to play Connect4
on a 8x9 board for 30 iterations, with this player being compared to one that trained on a 8x9 board from
scratch for the same number of iterations.

Results: The best AlphaZero player for Connect4 wins 73% of games against a MCTS player with
200 searches per move after training over 5,000 games of self-play for 42 hours. In the Connect4 tour-
nament, all AlphaZero players get better scores than the MCTS player, with the residual-based architec-
tures performing better than the convolution-based architectures. The Pathwayz tournament verifies these
results on a more complex game. Furthermore, results show how parameters such as number of convo-
lutional blocks, learning rate, and learning optimiser effect player competence. It has been shown that
fine-tuning results in a better AlphaZero player than training from scratch for a given amount of time,
with the former player winning 82% of games against a basic MCTS player and the latter only 73%.

Conclusions: This project shows how AlphaZero can be implemented and trained using limited
resources and obtain competent artificially intelligent players for Connect4 and Pathwayz. Furthermore,
the scalability results indicate that using this in conjunction with fine-tuning allows more complicated
instances of games to be learnt more quickly. However, further tests are needed for some of the parameters
and there is room to explore different architectures in the future.

Keywords — Machine learning, reinforcement learning, board games, scalability, AlphaZero, AlphaGo,
Monte Carlo Tree Search
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I INTRODUCTION

Reinforcement learning aims to solve one of the main problems of the wider field of artificial
intelligence: can a machine learn something without guidance? Its usefulness comes from the
fact that it closely models how humans learn; when children interact with the environment, they
receive information and use that to inform any future actions. Reinforcement learning copies
this approach by having an agent that performs actions in an environment, and then calculates
certain short-term and long-term reward values to evaluate the action compared to other possible
actions, eventually learning the best action to take in each situation. This paradigm is well-suited
to learning to play a game and this is where reinforcement learning has had most of its well-
known successes, in games such as backgammon [1] and even Atari video-games [2]. A typical
reinforcement learning approach uses self-play where an agent plays multiple games against
itself to arrive at the best possible set of moves to win the game.

One of the most recent examples of reinforcement learning success is AlphaGo which beat
the world Go champion, Lee Sedol, four games to one in March 2016 [3]. This approach used
a combination of reinforcement learning and supervised learning using expert moves. Later,
the same team created AlphaGo Zero which removed the need for supervised learning, thereby
creating a system solely based on self-play reinforcement learning [4]. Finally, AlphaZero was
created which generalised this approach to create superhuman players for the games of Chess,
Shogi and Go [5], all trained from initial states with only knowledge of the game rules. It is
this last approach that is so revolutionary as it is one step closer to the long-standing ambition to
create a program that can learn for itself.

One area of contention within reinforcement learning is that currently it is hard to reproduce
results to verify if improvements have actually been made [6]. To make this harder, the original
AlphaZero approach made use of extensive computing resources, using 5000 first generation
TPUs (a TPU is equivalent to a high-end GPU) to generate training games, 64 second generation
TPUs to train the networks, and a combination of 4 TPUs and 44 CPUs while playing. This adds
doubt as to whether it is an algorithmic improvement or just a hardware improvement. For this
reason, this project focuses on whether it is possible to re-produce the results of AlphaZero and
whether it is feasible using much fewer resources; in this case, one CPU and one GPU while
training and playing. To extend on this, traditional fine-tuning will be explored; fine-tuning of
pre-trained networks has proven to be very successful in the field of computer vision due to the
general feature extractions of convolutional neural networks (CNNs). CNNs form the basis of
the neural networks used within AlphaZero and this project explores if this fine-tuning can be
applied to AlphaZero to allow a player that has been pre-trained on one instance of a game to
easily be trained to play a bigger instance of the same game. The motivation behind this is to
speed up the training of these players such that AlphaZero could be used to solve larger and more
complex problems quicker than training from scratch, thereby increasing its effectiveness using
limited computing resources.

New uses for neural network architectures are being found all the time, and it is hard to know
exactly which architecture is best for the current problem, as is highlighted by the transition from
convolutional neural networks (CNNs) in AlphaGo to residual CNNs (R-CNNs) in AlphaZero.
For this reason, experiments will be performed with two different neural network architectures
(CNN and R-CNN) to further understand how they affect AlphaZero. Alongside this, various
training parameters will be tested to understand their effect on the results.

Section III explores the related work in this field, specifically the AlphaGo, AlphGo Zero and
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AlphaZero research papers that this project is based on. Section IV explains the implementation
and training in detail and Section V and VI present and analyse the results of the various tests,
including tournaments between all trained AlphaZero players for both Connect4 and Pathwayz
and comparisons of different training parameters. Section VII concludes the project and points
to further work.

The results show that AlphaZero can be implemented effectively using limited hardware to
beat a basic tree search algorithm (Monte Carlo Tree Search, MCTS) at Connect4 on a 6x7 board,
with the former winning 73% of games when given 200 searches per move. Furthermore, this ap-
proach can be implemented for a more complicated game, Pathwayz, with relative ease. Results
with fine-tuning were successful, with a fine-tuned Connect4 player for an 8x9 board beating a
player trained from scratch in a tournament. This indicates that AlphaZero can be used to play
simple games and then re-use that learning to speed up training on more complicated instances of
the same game. Further work with more sophisticated transfer methods could explore the ability
of the network to transfer learning between Connect4 and Pathwayz as they both involve similar
strategies.

II DEFINITIONS

The definition of reinforcement learning used in this paper is taken from Sutton (1998) [7]. A
brief summary is given here: in a given reinforcement learning task, there exists an environment
and an agent that interacts with the environment at discrete time steps. There is a set of states
and a set of actions. From any given state, the agent is able to perform any one action from a
subset of actions. The agent follows a policy, which is a mapping from states to probabilities of
selecting actions. Every time-step, the agent moves to a new state and is given a reward. The
main principle of reinforcement learning is for the agent to learn how to change its policy to
maximize the reward [8].

III RELATED WORK

Reinforcement learning can be split into two main components: policy evaluation and policy
improvement [7]. Policy evaluation concerns estimating the value function for a given policy, i.e
estimating the reward that a player will receive if they follow the policy. Policy improvement
concerns improving the policy with respect to the current value function, such that as the value
function becomes optimal, the policy function will also become optimal. The three main ap-
proaches to solving reinforcement learning problems are: dynamic programming; Monte Carlo;
temporal difference learning (TDL) [7]. Most research focuses on the latter two methods and so
only these will be discussed.

A Monte Carlo approach estimates and learns the value function based on simulations of full
games. An early example of its success was being used to solve a pole-balancing problem [9]
building on even earlier work with a manual box-based method called MENACE [10].

TDL was first introduced in a Checkers-playing program [11] and aims to improve a value
function by looking n steps in the future, as opposed to simulating an entire game. Q-learning,
a specific TDL approach, was introduced Watkins (1989) [12] and can still be seen in current
work. Instead of optimising a state value function, this approach optimises a state-action value
function (also known as a Q-value function). This makes the process of policy improvement
simpler as the policy can simply be greedy with respect to the Q-value function. One of the most
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famous TDL successes is a backgammon player called TD-Gammon [1]. This approach is one of
the earliest examples of using a neural network to approximate a value function, with temporal
difference learning being used to train the parameters for the network. This improved vastly on
previous work and paved the way for neural-network and reinforcement learning combinations
in the future, which eventually led to deep-learning-based reinforcement learning algorithms as
hardware allowed neural networks to be larger.

Reinforcement learning is moving more towards integrating with deep learning to achieve
the best results, and it is this approach that led to the design of the original AlphaGo system [3]
and the subsequent AlphaGo Zero system [4], finally resulting in AlphaZero [5], which is the
approach to be used in this research project. To understand how AlphaZero works, it is worth
comparing it to not only the previous two iterations, but also other recent research papers that
take a different approach to combining reinforcement learning and deep learning to solve similar
problems.

A Main Method - Reinforcement Learning
Arguably the most important aspect of AlphaZero and other systems is the main method used

for learning the policy that the player should take. Background research suggests a tendency
in recent years towards temporal difference learning, specifically Q-learning which eventually
resulted in the creation of Deep Q Networks (DQN) [13], [2], [14]. DQNs build on from the suc-
cess of TD-Gammon [1], and use Q-learning to train a neural network to approximate the value
function. This approach was able to achieve human-comparable results on 49 2D Atari video-
games, using the same algorithm, network architecture and hyper-parameters for each player
[14].

More recently, the Deep Recurrent Q Network (DRQN) has been proposed, and this approach
has been shown to perform better than traditional DQN when playing a 3D game called DOOM
[15]. This approach focused mainly on utilising a divide-and-conquer method with separate
neural networks for each game phase and also on augmenting the DRQN with high-level game
information, however it is the basic DRQN algorithm which is of interest here. This approach
adds a Long-Short-Term Memory (LSTM; a neural network component that remembers values)
architecture on top of an existing DQN, with the aim of mitigating the fact that in a partially
observable environment (such as a 3D game world), an agent only receives an observation of
the environment and does not know the full state. This approach is one the first instances of
reinforcement learning being applied to partially observable environments; however in terms of
being used to play a board game it is not as useful as many board games are fully observable.

Another recent research project also exploited the use of a DQN, but this time for the game
“Super Smash Bros. Melee” [16]. Furthermore, this approach also made use of a second tem-
poral difference learning method, called actor-critic. Unlike Q-learning, which solely focuses
on learning an optimal value function, actor-critic methods attempt to learn both a direct policy
function and a value function at the same time [7]. This is to counteract the issues with value-
only-based methods and policy-only-based methods. AlphaZero, with its use of a policy network
and a value network, in some way resembles this approach of using an actor-critic temporal dif-
ference learning method, which might sound counter-intuitive due to the fact that AlphaZero
and its predecessors predominantly make use of a modified version of Monte Carlo Tree Search
(MCTS), which is originally based on Monte Carlo reinforcement learning methods. MCTS,
[17], is a decision-time planning algorithm, that searches a game tree and averages results from

4



self-play simulations (rollouts) to determine the best moves to make from a given position in a
game. A more detailed explanation is given in section VI.E. The modified version, known as
Asynchronous Policy and Value MCTS (APV-MCTS), executes multiple searches in parallel and
asynchronously backs up results [3]. This links to prior work which shows how asynchronous
workers perform better when used with reinforcement learning than traditional approaches [13].

MCTS differs from traditional Monte Carlo reinforcement learning approaches because it is
not attempting to learn a complete value function, instead it is estimating probabilities and action
values for the current state according to a given rollout policy (often random) [7]. In this way,
MCTS does not learn a value function for a game, it simply learns at decision-time an estimate for
the best actions to take. Rollout algorithms are not actually often seen as reinforcement learning
algorithms because they do not maintain long-term memories of values or policies [7].

AlphaZero extends this approach with a neural network that predicts values and probabilities
of moves, and in this way AlphaZero does act like a traditional reinforcement learning algorithm
as it is attempting to find a network that can learn the optimal value and optimal policy, much
like the actor-critic method used within [16]. AlphaGo still uses rollouts, however AlphaZero
replaces these with a value-estimate from a neural network. This means that within MCTS
values are updated by comparison to the estimate of the value of the next state reached, and so
this approach acts more like TDL than a Monte Carlo method; however, these methods are just
two ends of the same spectrum, [18], [7].

Other papers have achieved promising results with the use of MCTS and neural networks,
[13]; the difference is that AlphaZero and its predecessors use MCTS for both policy evaluation
and policy improvement by predicting both probabilities and values.

AlphaGo trained with labelled data from expert moves, however AlphaZero was trained with-
out the need for any supervised learning from expert data and it is this novel approach that opened
the door to many avenues of research.

The approach of many of these papers is similar in that they combine the use of a traditional
reinforcement learning algorithm, such as Q-learning or actor-critic, with neural networks to
enhance results. Many of the approaches use DQNs or some variant and in many ways these
methods, along with AlphaZero, are built on the foundation of TD-Gammon [1]. It is also clear
that AlphaZero and its predecessors built on the progress of DQNs by extending the ideas to
work with MCTS which has already been shown to work well with board games such as Othello
[19]. MCTS approaches are several magnitudes of order slower than DQN agents, however they
actually perform better in certain tasks, and it makes sense to use this approach in AlphaZero as
board games allow more thinking time [13].

B Main method - Deep learning
All versions of AlphaZero (AlphaGo, AlphaGo Zero, and several unpublished versions as

referenced in [4]) use similar concepts and neural network designs, but differ slightly in their
configuration and use of neural networks. It is worth exploring how this has evolved through-
out other research and how it compares to the networks and designs used by similar papers to
understand why this is a state-of-the-art approach.

Architecture: In the original paper on AlphaGo, [3], MCTS was augmented with three neu-
ral networks to determine the following: a tree policy for searching the game tree; a rollout policy
for choosing actions in the simulations; a value function for estimating the expected outcome of
a game. In contrast, AlphaZero, [5], make use of only one neural network that determines both
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the value and policy at a given state. No rollout policy is needed as rollouts are not performed in
AlphaZero.

From a high-level view, having to only train one network simplifies the process. The networks
used are very similar in architecture, both making use of the recent successes of CNNs for playing
games, [13], [20]. AlphaZero uses deep neural networks and additionally makes use of residual
blocks to simplify the learning of the policy and value functions [21]. Furthermore, combining
two neural networks into one neural network with two separate heads has been shown to be better
than separate policy and value networks in learning Go, [4], and was also shown in other work to
improve the long-term learning of a LSTM for playing a 3D first-person shooter game [15]. The
approaches of AlphaZero and this other work are very similar, however the latter makes use of
two neural networks (both with the split-head architecture): one is used for navigation and one is
used for action/fighting. The reason for this is to modularise the networks and fine-tune each for
a specific purpose, allowing the networks to be trained with fewer resources. This approach is
important in the realm of video-games but for simple board games, only one network is needed.

Approach: The learning method for AlphaGo differs from AlphaZero as the latter incorpo-
rates MCTS into the learning phase. AlphaGo uses a training pipeline consisting of supervised
learning to initialise the policy network, policy gradient improvement via self-play to improve
the policy network and generate training data, and finally a second round of supervised learn-
ing to train the value network using the data generated in the previous step. AlphaZero, on the
other hand, combines self-play learning with MCTS to fine-tune the policy and value network
as follows: the result of the policy network is used as the tree policy for a MCTS search whose
final result is an improved policy. This policy is then projected back onto the function space of
the policy network. Similarly, the result of each game is projected back onto the value network.
This approach can be traced back to Guo et al. (2014) [13], which also projected the output of a
MCTS search onto a neural network, however that approach simply used a fixed MCTS policy so
was simpler than the approach used for AlphaZero [5]. Both AlphaGo and AlphaZero make use
of self-play to generate data to train a network using supervised learning, but AlphaZero simply
extended this idea to remove the need for expert data, thereby shifting the focus from supervised
learning to reinforcement learning. The use of MCTS during learning for this reason is more
aligned to the fundamental idea of reinforcement learning and is why it is such an important new
approach. Furthermore, AlphaZero performed better than the original system when playing Go
[4], and the generalisability of the approach to other games of the same type was proven by its
use in Chess and Shogi [5].

Lample (2017), [15], makes use of a combination of a DQN and a DRQN to train the neural
networks, both of which build on the original Q-learning algorithm [12]. This approach is more
aligned to AlphaZero than AlphaGo as it is more pure reinforcement learning whereas AlphaGo
uses supervised learning.

C Scalability
In much research, scalability is focused on designing neural networks and algorithms that

can scale up to problems of different sizes without changing the network architecture. The most
relevant research in this area concerns evolutionary methods using neural Turing machines [22].
This approach deals with encoding memory accesses in such a way that the networks can train
and be used on inputs of different sizes, with different output lengths. However, scalability in
this project can be more closely associated with fine-tuning. Fine-tuning is commonly used
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within computer vision with the aim to re-use existing classifiers on new problems. An example
success is using a pre-trained CNN-F (Fast Convolutional Neural Network) to recognise different
items of food [4]. This is done by replacing the final layer with one that has the correct number of
outputs and succeeds due to the fact that the target classification problem is similar to the original
classification problem. Fine-tuning relies on the fact that early layers in a CNN encode general
features, and later layers encode more specific features so only these higher level features need
re-learning. However, this leads to one of the main problems with fine-tuning which is that if the
new and original tasks are quite dissimilar, fine-tuning on the new task will cause the network
to forget how to solve the original task [23]. Progressive networks aim to solve this and can
be used to train a neural network on multiple different tasks in sequence without the risk of the
network forgetting old task-specific features [24]. The main aim of progressive networks is to
learn different tasks, and as such could be used to transfer learning between games.

Scalability specifically related to reinforcement learning in board games is hard to come by,
but a multi-dimensional LSTM (MDLSTM) has been introduced [25], which is shown to be more
invariant than CNNs to warping and scaling to large image sizes. In this way, MDLSTMs may be
suited to the task of scaling up board sizes. However, for a project of this complexity traditional
fine-tuning approaches should be sufficient as the original and target tasks are so similar [23].
Furthermore, due to time constraints, the other two more methods were unable to be explored.

IV SOLUTION

A Tools and Libraries
Development: All code was written using the JetBrains PyCharm IDE, running with Python

3.6. Python Packages: Pytorch was used to code the neural networks. Specifically, version 0.4.1
was installed for windows 10 and integrated with CUDA 9.0 to enable training on GPUs. The
only other modules installed were numpy 1.15.2 for efficient array operations, matplotlib 3.0.0
for plotting results, and tqdm 4.28.1 for displaying progress bars during training and playing.
Training: All training and testing was performed on a laptop running on an Intel Core i7-8550U
CPU with an NVIDIA GeForce MX150 graphics card.

B Game - Connect4
The main game chosen for this project is Connect4; a two-player connection game. A typical

board consists of six rows and seven columns. Each player takes turns dropping one of their
coloured pieces into a column. A player wins when they have four of their pieces connected in a
line, either horizontally, vertically or diagonally. This game was chosen for its simplicity; there
are only seven possible moves on a standard board and so more time could be spent exploring the
implementation of AlphaZero. The implementation was modularised such that the specific game
logic could be changed without significantly changing how other parts of the system interact with
it. A player interface was implemented that has been extended to create four different players:
human, random, MCTS, AlphaZero. A Game class was also implemented; this takes a board
and two players and guides one or more games between these players by asking each player for
a move in turn until the game has ended.

C Game - Pathwayz
After most of the testing was completed for Connect4, the project shifted focus to Pathwayz.

This was done for two main reasons: it allows the implementation to be verified further and
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shows the power of AlphaZero by showing that the approach can be generalised to different, and
more complicated, games. The rules are simple: both players place pieces on the board, with the
aim of making a fully connected path from one side of the board to the other. Each player can
place a regular piece of their colour or a permanent piece of the opponent’s colour; this piece
also flips the colours of all the regular pieces around it so adds a complex layer of strategy. The
original board size is 8x12, but a board of 4x6 was used for this implementation; even with such
a small board, the first player has 48 possible moves as opposed to seven in Connect4.

D Overview of AlphaZero
AlphaZero consists of two main components: a MCTS algorithm and a neural network, both

of which will be explained in more detail in later sections. The basic idea is that the MCTS uses
the neural network to predict probabilities (for taking certain actions from certain states) and
values (estimates of how likely a player is to win from a certain state). This removes the need
for full rollout simulations that are present in the original MCTS implementation [17]. During
the training phase, two player agents using MCTS with the current neural network parameters
play many games against each other, using the results from the output probabilities of the MCTS
and the results of the games to train the neural network with traditional backpropagation. During
playing, the AlphaZero player uses MCTS with the best neural network parameters to guide the
search.

E Monte Carlo Tree Search (MCTS)
MCTS is a method of using simulated self-play to learn the best actions to take for any given

state [17]. The idea is to have a tree representing the state-space of the problem, including
all states and actions possible, where a state describes the board configuration at a given time.
Within the search tree, this is shown via the use of nodes and edges. Nodes store a specific
state along with extra functions and properties, and edges are drawn between nodes, representing
state-action pairs which have associated values relating to how likely a player is to win the game
if they take the specific action from the given state. MCTS can be broken up into four main
stages:

• Select: the search tree is followed from the root node, and actions are chosen using the upper
confidence bound (UCB1) formula. The formula for a specific state-action pair is as follows:
w
v
+ c

√
ln vp
v

, where w is the number of searches that took this action from this state and
resulted in a win, v is the number of searches that took this action from this state, and vp is
the number of searches that entered this state. The first component represents the state-action
value and is the exploitation component which is larger for nodes with greater values; the
second component is the exploration component which favours nodes which have not been
visited as often; C is simply a weighting that determines how much to explore or exploit. The
action chosen is that which maximises this formula and this continues until a leaf node is
reached.

• Expand: an action is chosen from the state in the leaf node that has not yet been explored
and the state that results from taking that action is added to the search tree as a node, with a
state-action pair edge added between the leaf node and this new node.

• Simulate: a simulation is run from the newly-added node until a terminal state is reached. The
actions taken within the simulation are chosen based on a default policy (usually random).
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• Backpropagation: the result of the game is calculated with respect to the current player in
the root node, and is given as +1 for a win, -1 for a loss and 0 for a draw. This value is then
propagated up through the edges from the node added in the expand step to the root node.

• Final move: The final action chosen from the root node is the action that has the highest
associated value (wins/visits ratio).

Figure 1: Visualisation of MCTS, taken from [26]

AlphaZero uses a modified version of this algorithm called APV-MCTS. This significantly
decreases training time by doing the following: training the network and playing self-play games
simultaneously; improving the MCTS algorithm by searching the tree and sending boards to the
network for evaluation asynchronously in batches. For this project, the basic MCTS algorithm
without these changes was used as APV-MCTS adds a lot of complexity to the implementation
and would not be fully effective without more complex hardware. The main changes are as
follows:

• when expanding into a new node of the tree, the corresponding state is sent to the neural
network to calculate a value for how likely the next player to move will win the game and this
value is attributed to the state-action pair edge leading into the node. The neural network also
returns a prior probability for each state-action pair leaving the expanded node;

• During the select phase, actions are chosen using the following formula: w
v
+c∗p∗

√
vp

v+1
, where

v, w, vp, and c are defined as before, and p is the prior probability of taking this particular
action from the current state. The value of w

v
is also not explicitly known as no simulations are

performed, and so this is instead replaced by a q value which is the average value (estimated
by the neural network) of states reached via exploring a path that passes through the current
state-action pair;

• no rollout simulations are performed. After expanding to a new node following a certain state-
action edge, the initial value of the state-action is backed-up through the tree;

• the final move chosen is based on the number of times each action is visited from the root
node. A temperature variable controls how this is done; if the temperature is 0, the action
that is visited the most is chosen, otherwise the action is chosen probabilistically where the
probability of each action is given by v

1
t where v is the number of times this action is taken

from the initial state and t is the temperature parameter set by the user.
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F Neueral Network
The AlphaZero implementation makes use of one convolutional block followed by 19 residual

blocks (containing two convolutional layers with batch normalisation), and finally a split into
two network heads - one to estimate value and one to estimate probabilities of actions. The
main improvement of this network over those previously used in AlphaGo is the use of two
network heads, such that probabilities and values can be computed using the same neural network
architecture. This makes implementation easier and aims to improve learning due to both values
and probabilities guiding the same network; this can be backed up by their own tests which
confirmed that a dual-head network was indeed better. CNNs have long been known to have
great success within the realm of board games and AlphaZero extends on this by making use
of a relatively new technique called residual blocks which also first found great success in the
field of computer vision [21]. The main aim of using residual blocks is to counteract some
issues that deep networks have, specifically vanishing gradients whereby repeated multiplication
during backpropagation results in infinitely small gradients, thereby making deeper networks
harder to train. A residual block uses a short-cut connection to add the input to the output from
the previous convolution layers; this lets the network learn the residual mapping rather than the
real underlying mapping. In AlphaZero, residual blocks should perform better than only having
convolutional layers [4].

Figure 2: Structure of AZ-Res and AZ-Conv. In the residual net-
work, the ConvBlocks are replaced with Residual blocks.

The idea of using two network heads was used in this implementation, however, the main
AlphaZero network was designed for use with more complicated games such as Chess having a
state-space of size 1047 compared to the relatively small state-space of Connect4 (1013). Further-
more, a network of this size would take a very long time to train on the available hardware. For
this reason, a smaller version of the AlphaZero network, AZ-Res, was trained and can be seen
in figure 2. For testing purposes, this project also implemented a pure-convolution network, AZ-
Conv, which is identical in every way, except with the removal of the skip-connections present
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in the residual network.
The networks use batch normalisation on convolutional layers and a dropout of 0.3 on fully-

connected layers. This follows the original implementation [4], and was found to be the most
effective through experimentation. While training, a batch size of 64 was chosen, and training
was only performed for two epochs. It is unclear what learning optimiser is used for training
AlphaZero, however following from the guidance of [27], and subsequent testing, the Adam
optimiser was chosen [28]. The loss for each training batch was calculated as a combination of
a mean-squared error loss for the values and a cross-entropy loss for the probabilities and the
weights were initialised randomly, following the guidance from the original implementation.

G Training phase
Training in AlphaZero is at its core similar to supervised learning. The difference is that the

labelled data is generated on-the-fly by games of self-play using the modified MCTS algorithm
described in section VI.D. During one training iteration, a number of episodes are performed to
generate example data. An episode consists of one game of self-play and examples are generated
in the form (board state, value, probabilities) where the probabilities are the probabilities returned
by the MCTS search for actions from this board state and the value is the final result of this
episode’s game with respect to the player who is about to move in the current board state (i.e,
+1 if the current player wins from this position). During this stage, the MCTS searches 100
times before choosing a move. Various values were chosen, ranging from 25 to 800, but this
was found to be the best trade-off between training time and results. MCTS acts as a policy
improver as it starts with the prior probabilities determined by the neural network, performs a
number of searches to improve the estimates, and uses the refined probabilities to update the
network weights. During each episode, a temperature parameter is used. This is different to
the temperature parameter defined in Section IV.E. In this context, the temperature is the move
number at which the MCTS temperature (Section IV.E) is changed from a value of 1 to a value of
0. Essentially, before this temperature threshold is reached, the probabilities the network learns
for each action are all non-zero, but after the threshold the resulting probabilities are sparse
encodings with the best move having a probability of one, which should speed up training.

After all episodes have been performed, the example set generated is added to a list of all
example sets. These examples are combined and shuffled. Finally, 4096 samples are chosen
uniformly based on [4] and the network is trained on these examples as described in the previous
section. The updated network weights are then saved and the next training iteration performed.

While training, all examples in the example sets are saved after each iteration along with the
network weights so that training can be continued at a later date by simply loading the network
weights and the examples generated so far.

While looking at training examples, it was clear that some of the older examples generated
by the early network weights were slowing down the training and it would be best to discard
some of those examples as training progressed. [27] had a similar idea and their approach was
followed: a sliding window of example sets is used so as to discard earlier example sets. The
sliding window increases in size over time to preserve more example sets as the network learns
more.

Dirichlet noise was added to the prior probabilities of state-action pairs from the root node of
the MCTS search tree during training. Noise was created using a Dirac distribution, with an input
parameter to control its distribution (this parameter will be called Dirichlet from this point). The
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amount of noise added to the root node probabilities is determined by an epsilon parameter, with
a high epsilon value meaning little noise is added and a low epsilon value meaning more noise is
added. An epsilon value of 0.25 was chosen for all tests [27]. It is not clear how best to choose
the Dirichlet parameter but for Connect4 a value of 1.0 was used. Pathwayz used the lower value
of 0.3 as it is closer in complexity to Go, which uses this value [5].

H Scalability
An interesting issue within the realm of reinforcement learning, specifically relating to game

playing, is whether fine-tuning of networks can be used to scale up to bigger instances of the
problem. For the purposes of this project, scalability was only tested on Connect4 using one final
player, and the scaling was from Connect4 on a 6x7 board to Connect4 on an 8x9 board.

In the AlphaZero network, two layers within the output heads use the number of available
actions that a player may take as a parameter when being defined; this causes issues when scaling
up to a bigger board size as these two layers will be unable to deal with the new board size input.
Furthermore, the ouput of the policy head should match the number of available actions and this
differs depending on the board size, so the network has to be changed. The approach taken is
as follows: the pre-trained network is loaded (trained on a 6x7 board), the two affected layers
are replaced with new layers that have the correct number of outputs and then the network is
re-trained.

I Implementation issues
Replicating the results of AlphaZero took considerable effort as many of the design choices

are not fully explained in the original papers. One main area of confusion was the optimiser used
while training the network. The original paper suggests the use of the stochastic gradient descent
(SGD) optimiser, with learning rate annealing starting from a learning rate of 0.2 and ending
up at 0.0002. However, when this configuration was used to train the AZ-Conv architecture
described earlier for 20 iterations, the training loss did not decrease. This seems to be a problem
with such a high initial learning rate and so SGD was tried again but with a static learning rate of
0.01. Using this network, the player could indeed learn. For comparison, the same network was
trained with the same parameters using the ADAM optimiser and this performed better against
MCTS than the previous player, resulting in the choice to make ADAM the default. This is just
one of the issues that were encountered when trying to determine the best parameters to replicate
the results of AlphaZero and this highlights the difficulty of the task.

J Testing, Verification and Validation
The three main working parts of this system are the game, the MCTS and the neural network.

If any of these three components is not performing correctly it could skew results. For this reason,
all three parts were tested and verified.

To verify the game implementation, simple unit-tests were created and run every time a
change was made.

To verify the MCTS implementation, a different implementation was taken (from [29]) and
used within this AlphaZero implementation for a few games. The resulting moves chosen by
this MCTS implementation were compared to those chosen by the implementation used in this
project to see how they both perform. Most of the moves chosen were the same from a given
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board state, and the resulting players performed similarly.

Verifying the neural network is diffi-
cult, mainly for the fact that all of the
data is generated by using the neural
network in some way so it is hard to
distinguish between a data error and
a network error. Much early testing
shifted to a simplified version of Con-
nect4 played on a board with only five
rows and six columns, with the aim to
connect three pieces instead of four.
Graphs were generated showing the
value mean-squared error loss, proba-
bility cross-entropy loss and the com-
bined loss to verify that the network
was training.

Figure 3: Early loss graph for AlphaZero using a CNN
playing Connect3 on a 5x6 board (value loss in or-
ange, probability loss in green, combined loss in blue)

Figure 4: Early results of AlphaZero imple-
mentation vs Random opponent

Figure 5: Later results of AlphaZero imple-
mentation vs Random opponent

From figure 3 it is clear that the network is learning something, but it is not clear whether this
translates into a worthy adversary. Every newly trained network was validated by being used by
an AlphaZero player that played one hundred games against another opponent; the results were
then plotted on a graph. In early testing, the AlphaZero player could not even convincingly learn
to beat a random opponent, as shown by figure 4, however after fixing various coding issues, the
AlphaZero player agent could almost always beat a random opponent, as shown by figure 5.

V RESULTS

A Parameters and architecture
This project concerned many different aspects, one of which was to examine the effects of

different configurations and parameters when training. The default parameters are as follows:

13



• Network: AZ-Conv with two Conv-blocks, Optimser: ADAM, Learning rate: 0.01, Batch
Size: 64, Dropout: 0.3.

• Number of training examples: 4096, Number of episodes per iteration: 100, Number of
searches per move in training: 100, C (exploration): 1.0, Dirichlet noise: 1.0, Epsilon: 0.25,
Temperature: 18, Example window start size: 4, Example window maximum size: 35, Exam-
ple window increase rate: every 2 iterations.

Each table shows the win percentage of an AZ-Conv player trained for five iterations, playing
100 games against a MCTS player with 200 searches per move with varying parameters. The
player orders were swapped after each game to make the tests fair. Only the parameter in the
table is changed between tests.

# Blocks Win Percentage
1 36
2 40
3 36
4 45

Table 1: Varying number of
blocks

C Win Percentage
1 40
3 35

Table 2: Varying C

Optimiser Win Percentage
SGD 40
ADAM 45

Table 3: Varying optimiser

Batch size Win Percentage
32 38
64 37
128 50

Table 4: Varying batch size

Dropout Win Percentage
0.1 48
0.3 37
0.5 46

Table 5: Varying dropout

Table 1 shows a trend towards larger networks being able to play at a higher level, intuitively
due to their increased learning capacity. The results from table 2 seem to suggest that increasing
C decreases performance, however due to the guidance from Prasad (2018) further testing was
needed [27]. Table 4 suggests an improvement with a larger batch size of 128. Table 5 is in-
conclusive as to a specific trend but seems to be best with a dropout of 0.1 or 0.5. Both network
heads contain convolutional layers with 2 filters, however using 32 filters in the head resulted
in an improvement from 40 percent to 57 percent wins against MCTS after five iterations of
training. A further test was performed where the number of training examples per iteration was
doubled, however this made no improvement to results.

B Connect4
Abbreviations for all the trained players are as follows: AZ-Conv: AlphaZero with convolu-

tional architecture, using two convolutional blocks and default parameters; AZ-Res: AlphaZero
with residual convolutional architecture, using two convolutional blocks and default parameters;
AZ-Res6: AlphaZero with residual convolutional architecture, using six residual blocks and de-
fault parameters; AZ-ResDiff: AZ-Res with the following changes: dropout of 0.5, batch size
of 128; AZ-ResC: AZ-Res with the following change: CPUCT value of three instead of one,
AZ-Res32: AZ-Res with 32 filters in the convolution layers in the value and policy heads.

14



All players were trained for 50 iterations, which involved 5,000 games of self-play and com-
pleted in approximately 40-50 hours. All players were tested by playing 100 games against a
basic MCTS player using the same number of searches per move. Various numbers of searches
were used and the results are shown below:

Figure 6: Results against MCTS with varying search limit

This table suggests that an AlphaZero player using any of the mentioned architectures, except
AZ-ResC, will always be better than a basic MCTS player, verifying that AlphaZero works on
limited hardware given enough training time. There seems to be a trend that the more searches
each player is allowed, the less improvement each player has over MCTS; this is most likely
because Connect4 is simple and so a basic MCTS player can be near-optimal with enough simu-
lations. The results for games involving 50 and 200 simulations favour the residual architectures,
but suprisingly with 800 simulations the convolutional architecture does not end up being the
worst. However, it is more useful to compare players with a more limited number of simulations
as this more accurately leads to a comparison of how well the networks have trained as opposed
to relying on how well MCTS can optimise the searches.

Figure 7: Results from all games played in tournament

To find the best player, all players were placed in a tournament in which each pair played
200 games, with each player having 200 searches per move. The player orders were switched
between games. Due to the fact that most games between two AlphaZero players play out in
the same way when repeated, it was decided to alter the games such that the first move for both
players was chosen randomly. This meant the tournament found the player that could best win
from a random start position, and hence the player that had learnt better generalised play. The
results are shown in figure 7.

All of the trained players perform better in the tournament than the basic MCTS player as
expected. In terms of comparing architectures, the performances are not massively different,
however the basic residual architecture does seem to offer slightly better performance than the
convolutional architecture, backing up the decision of the original authors to switch to the former
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[5]. Both AZ-ResDiff and AZ-ResC perform worse than the basic AZ-Res, suggesting the default
parameters are better. AZ-Res6 performed better than AZ-Res in this tournament, but still not
better than AZ-Res32 which came out as the best player, intuitively down to its higher learning
potential for the value and policy head outputs. It is possible that the small differences in results
are down to the fact that Connnect4 is a simple game and all architectures are strong enough to
learn it well, even after only 5,000 games.

C Pathwayz
The default parameters used for Pathwayz are almost identical to the defaults used for Con-

nect4, with only the following changes: number of searches per move increases from 100 to 200;
Dirichlet is 0.3. The players trained are defined in the same way as they are for Connect4, with
the removal of AZ-ResDiff and AZ-Res32 (time constraints meant that it was not possible to
test these on Pathwayz) and the following additions: AZ-ResDirichlet1: AZ-Res with Dirichlet
value of 1.0; AZ-ResDirichlet003: AZ-Res with Dirichlet value of 0.03.

All players were trained in the same way as for Connect4, and the same tests were performed.
The results are shown below:

Figure 8: Results against MCTS with varying search limit

Apart from the anomalous cases of AZ-ResC and AZ-ResDirichlet1 with 50 and 200 searches
per move, all players are able to beat a basic MCTS player with the same number of searches.
The best player changes based on the number of searches per move, but surprisingly with 200
or 800 searches per move, AZ-Conv is the best player. This may seem like a contradiction
against the previous results for Connect4, however the most likely cause is that the best noise
and temperature parameters have not been found for Pathwayz, meaning that with only 200
searches per move while training, the players are learning in a sub-optimal way. The effect of
noise can be seen clearly by the stark differences in win percentage between AZ-ResDirichlet1
and AZ-ResDirichlet003.

Figure 9: Results from all games played in tournament
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Figure 9 reiterates previous results and clearly show the success of all AlphaZero players
against MCTS in the tournament, no matter which parameters are used. Similarly to the Con-
nect4 tournament, AZ-ResC performs poorly compared to other players, indicating that with the
current default parameters, exploring rather than exploiting results in worse players; this could
possibly be alleviated with more searches per move while training as the original AlphaZero
implementation used 800 instead of 200 [5]. The results clearly show a difference between AZ-
ResDir1 and AZ-ResDir003 however, surprisingly it is the former which comes out better here,
which contradicts table 8. This can perhaps be explained by the added randomness in the tourna-
ment: AZ-ResDir1 is better at dealing with a random new situation whereas from an empty board
start, AZ-ResDir003 has learnt the better optimal strategy. This result indicates more testing is
needed with the noise parameters to understand which is optimal.

D Scalability
For scalability, the initial network taken was AZ-Res6 trained for 50 iterations, as shown in

the Connect4 results section. This network was fine-tuned, using the method mentioned in Sec-
tion IV.H, for a further 30 iterations on a 8x9 Connect4 board using a smaller learning rate of
0.001. Two versions of this were trained: in the first, all of the layers in the input block were
frozen such that their weights could not be changed and only the value and policy head would
be trained; in the second, no layers were frozen and all weights were learned. For compari-
son, an AZ-Res6 player was trained from scratch for 30 iterations on a 8x9 board using default
parameters.

Figure 10: Results from all games played in
tournament

These results again show the power of Alp-
haZero, specifically with the residual archi-
tecture, as the AZ-Res6 player trained from
scratch is better in the tournament than the
basic MCTS player. However, the main in-
sight shown by this graph is that fine-tuning re-
sults in much greater players than simply train-
ing from scratch. It is worth noting that the
pre-trained network without any fine-tuning
achieves 31% wins against a basic MCTS op-
ponent with 200 searches per move, whereas
both fine-tuned networks achieve above 70%
wins against the same player.

Furthermore, results suggest that only learning weights for the two output heads is better than
fine-tuning all of the weights in the network, as the former player finishes the tournament with
442 wins compared to 376 for the latter.

VI EVALUATION

A Strengths
The strengths of this project lie mostly within its implementation. Many stages of forward

planning and refactoring have resulted in a code-base that makes it easy to train neural networks
and play games against various different players. Furthermore, the modularity facilitates fast
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proto-typing and testing by making it simple to add new architectures, implement different games
and use different configurations of parameters. The usefullness of this can be highlighted by the
fact that Pathwayz was successfully implemented and made ready for training after two days.

In terms of results, it is clear that AlphaZero has been successfully implemented for Con-
nect4, showing a notable improvement over the basic MCTS algorithm. Promising results have
also been found for the more complicated game of Pathwayz, thereby successfully verifying the
generalisability of AlphaZero to different games, although more thorough testing with a wider
range of parameters is needed. Additionally, results have successfully shown the effect of many
different configurations of parameters and neural network architectures, going further to add
knowledge to how these things affect AlphaZero learning. Furthermore, the scalability results
show that traditional fine-tuning methods can extend to the realm of reinforcement learning for
board-games and form one valid method for improving the performance of players trained using
limited resources. Anecdotally it is also worth noting that no human player has managed to beat
any of the AlphaZero Connect4 or Pathwayz players although no formal testing was done.

B Weaknesses/Limitations
The main limitation of the project was unsurprisingly resources, including computing power

and time. The project aimed to explore whether AlphaZero could be feasible using limited hard-
ware and although the results show very much that AlphaZero does work well for relatively
simple games, the training required to reach that stage is not something to be ignored. All of the
players trained took over 40 hours to train for 50 iterations, involving 5,000 games of self-play.
For comparison, on the game of Go, AlphaZero trained for 34 hours over 21 million games.
This difference is due to the following algorithmic and hardware improvements: a much greater
amount of computing resources; the use of APV-MCTS. Furthermore, and playing 100 games
between two players with 200 searches per move could take anywhere from thirty minutes to
three hours to complete. This ultimately led to difficulties testing all of the different parameters
meaning that the best set of parameters may not have been found. The solution implemented in
this project is simpler than the one presented in the original AlphaZero paper, only in the sense
that the original implementation was asynchronous and therefore faster. This would potentially
have solved some of the timing issues, however would possibly require a more sophisticated
hardware setup to fully benefit from. Furthermore, this project involved a lot of implementa-
tion and verification was hard enough without adding in the notoriously difficult asynchronous
paradigm.

C Organisation of the project
The overall organisation of the project was flexible, with an overarching theme of experi-

menting with AlphaZero on a small scale, but with enough variation in the advanced project
deliverables to allow for changes in exact direction. One major problem that became apparent
was time: implementing the basic solution itself went mostly according to plan, but a myriad of
implementation bugs arose and all parts of the system needed to be individually verified multiple
times using time-consuming tests to make sure results could be trusted. The final verification
results and players shown in the results section consist only of a small subset of tests that were
run over the course of the project, with many players having to be re-trained when better pa-
rameters were found or bugs were fixed. Scalability was initially abandoned due to negative
results, however after fixing various bugs, scalability was revisited later in the project cycle with
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more promising results. However, having to revisit old tests left little time to shift focus to more
complex architectures and scalability paradigms and so this has to be left for future work.

VII CONCLUSION

The results clearly show that AlphaZero has been successfully implemented on limited hard-
ware for the simple game of Connect4, with the best player achieving 73% wins against a basic
MCTS player with 200 searches per move over 100 games with only 50 iterations of training,
which consists of around 50,000 training games over 40-50 hours. Performance on the more
complicated game of Pathwayz is promising, with the best player achieving 72% wins after the
same number of iterations, however the performances of the players indicate more testing of cer-
tain parameters is needed. Furthermore, two different architecture types have been compared,
with different configurations of each, with a residual convolutional neural network seemingly
out-performing a purely convolutional neural network on Connect4. However, a contradictory
result on Pathway, most likely due to sub-optimal noise parameters, highlights the need for more
experimentation.

Perhaps the most striking result is that traditional fine-tuning methods prove advantageous
over training players from scratch when scaling up Connect4 from a 6x7 board to an 8x9 board,
highlighting one possible method to increase the effectiveness of training AlphaZero using lim-
ited hardware. Furthermore, freezing all but the final layers of the network proves better than
fine-tuning all weights in the network.

It is clear that this is a project that would benefit with a lot more time, and this project acts
as more of an opening to many different new areas of possible research including the following:
more testing with Pathwayz to optimise parameters; exploring the use of LSTMs and MDLSTMs
with comparisons to other architectures when training and fine-tuning; the use of progressive
neural networks to transfer learning between Connect4 and Pathwayz.
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